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Abstract

The axial acceleration of electron rings is investigated in the presence of an azimuthal
field B, for the pure magnetic acceleration in an expanding magnetic field. It is shown
that, with the B,-field present the expanding field is replaced by a cusp field, the full
electron energy which is originally stored in the transverse motion of the electrons can

be converted to energy of axial motion.



Introduction

Electron rings have been proposed [1] and investigated [2] as a vehicle for accelera-
tion of heavy ions. In the simplest form of an electron ring accelerator, the original
transverse energy of the relativistic electrons is transformed into axial energy in an ex-
panding magnetic field. In most experiments that have been performed following this
concept electron rings were formed at modest energies at large radii in low fields and
were brought to their final state with high energy and small radius, suitable for acceler-
ation, by compression in a mirror type magnetic field. During compression and in the
compressed state during the shift of the ring from the mirror field to the expanding field
the ring crossed dangerous betatron resonances that could enlarge the minor radius of
the electron ring and thus reduce the internal electric field, (the holding power of the

ring), which should be maximized for a good performance of an accelerator.

One proposal to avoid the resonances and their deleterious influence was to apply an
azimuthal magnetic field B, in addition to the expanding field. One of the first to show
the beneficial consequences of this proposal was A. Schliiter [3] (Lecture given in IPP,
Garching, in 1970 unpublished). He showed that main resonances could be avoided and
effects on acceleration seemed to be tolerable. This proposal was investigated in more
detail by P. Merkel [4] (IPP Report IPP 0/4, March 1971). With regard to acceleration
the result of his paper was, that the B,-field “reduces acceleration, just as if the mass
of the ring were increased by a factor of 1 + a?, where « = B, /B, is the ratio of the
B-field to the main field B,” at the starting point of the expansion acceleration. As
long as this linear theory was applicable this reduction of acceleration was of no concern
because it could easily be compensated by a faster expanding field. What however could
be the effect on a real accelerator? Would the increase of the ring mass also exist in
the nonlinear regime and would this mean, that the final axial energy in the expanding
field would be reduced, e.g. by a factor of 2, if & was chosen to be 1? How would the
ring behave - or at least the single electrons in the ring -, when the ring - or the single

electrons -, reaches the area, where the expanding field has decreased to zero value?

Answers to these questions were sought with the help of computer calculations that the
author performed during his visit to the electron ring group in the Lawrence-Berkeley-
Laboratory in 1972. The results of these calculations were summarized in a comment
in an internal report [5] (ERAN-204, Lawrence-Berkeley-Laboratory, Berkeley, October

1972) that, in its main part, deals with a different subject (the nonexistance of an
instability that had been predicted).

This paper briefly summarizes the effects of the B,-field on the particle motion in linear

approximation, following the paper by P. Merkel. It then outlines the main components
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of a computer programme for calculation of the particle orbits and finally describes and

discusses the somewhat surprising result.
Ring acceleration in an expanding field with superimposed B,-field

An expanding field obeying Maxwell’s equations can be represented in cylindrical ge-
ometry by the following two equations

T

B,-ZBO'E‘2
B,,:Bg(l—e-z)

The azimuthal field is assumed to be produced by a current, flowing in a rod on the

cylinder axis: x
BtpO s

B, = —*-

Here € is a measure of the non-uniformity of the field, By is the value of the axial field

at z=0, and By is the value of the azimuthal field at the ring position Ry for z=0.

Choosing suitable initial conditions and neglecting radial velocities and acceleration
Merkel solves the equation of motion and finds for the axial velocity, v;, as a function

of z for small values of € - z an equation which can be written in the following form:

) STV g o 1 m 2

B et e o
This equation implies that the energy of the axial motion increases linearly with the
motion in the expanding field. The energy at a certain point, that is for a certain

reduction of the magnetic field decreases in inverse proportion to 1 + a?.

From this equation it follows that for a pure expanding field accelerator the beneficial
action of the superimposed B,- field for stabilizing the ring against betatron oscillations

has to be paid for by a loss in gain.

But apart from the regrettable loss of efficiency of an expanding field accelerator it seems
to be an interesting question how far the ring follows the linear assumptions and how
the motion of the particles looks like in the area of the vanishing field. The following
calculations will show that a consequent application of the expanding field method can

avoid the loss in acceleration energy and also show how the particle motion is affected.

Calculation of particle motion

For the calculation of the particle motion the full relativistic equations of motion have

been used in cylindrical geometry with the components r, ¢ and z. The full set of
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equations has been used unlike in the analytic calculation of Merkel and the energy
equation has been used only to check the accuracy of the calculations, as in the case

without electric field the energy of the particle should not change.

For the components of the magnetic field the expressions given in the last chapter have
been used. The electric field is zero. For the main case of interest here the following

initial conditions have been chosen: 1

=20
Me -7 - |

p=z=v;=v,=0

B.. =2[T)

e=1[m™] |

a=+1,0,-1

\
|
|
“
With the value of € = 1 the axial magnetic field B, is zero at z = 1.0 m. |
|

For the content of this paper it is not at all necessary that the electrons are relativistic.
Similar calculations, not reported here, have been performed for low energy electrons
of 5 keV (v = 1.01) which give the same results. The initial and general conditions are
chosen here in accordance with the conditions of the electron ring accelerator as the

starting point of this discussion.
Comparison with Merkel’s calculations

Merkel’s calculations of the ring acceleration are only valid for ez < 1, but as Fig. 1
shows, the differences between the analytical and the computer calculated quantities are
not too large even with ez approaching unity. In Fig. 1 a few quantities are plotted as a
function of the axial dimension z for different values of a. As one expects, the originally
transverse energy of the ring is almost fully transformed into longitudinal energy for
a =0 at z = 1 m, where B, goes to zero. The small difference between v, and vy,
is due to radial velocity which is connected with the radial expansion of the ring. Fig.

2a shows the radial motion as a function of the azimuthal angle for the ring motion
between z = 0 m and z = 1 m.

The axial velocity v, for @ = +1 or & = —1 is very similar during the initial phase
and corresponds well to the value calculated by Merkel (dashed line). Approaching z =
1m the value of v, for @ = —1 stays slightly below the value which would follow from
the application of Merkel’s calculation and would be given by: v,(a = B =gl G

. . . 1+02 '
The projection of the particle orbit onto the plane perpendicular to the axis is given in
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Fig. 2c. The particle spirals about the axis with decreasing radius. The ratio of the
axial velocities 8, for @ = 0 and a = —1 is plotted at the bottom of Fig. 1. The value
for o = -1 is always below the limiting value of Merkel and shows that acceleration is
decreased further (the “mass” of the particles is increased further) than expected from
linear theory. For a = +1 the deviations at small values of z from the Merkel value
tend to be smaller than for &« = —1. However, if z approaches 1 m v, drops drastically.
As can be seen from Fig. 2b this is due to the large radial velocity: the ring expands
faster for & = +1 than for @ = 0 (Fig. 2a). Following the increase in v, v, drops also,

when z = 1 is approached.

The most remarkable point in Fig. 1 is the fact that the azimuthal velocity v, is still
large at z = 1m where B, becomes zero for « = —1. On the one hand this means that
indeed only part of the original azimuthal energy of the ring can be used for acceleration
(even less than was expected from the linear calculation of Merkel) but on the other
hand the question arises of what will happen to the azimuthal velocity when B, remains

zero beyond z = 1 m or if it even changes sign.
The “paramagnetic” motion of the ring

To investigate the question posed in the last section the calculations of the particle
motion were continued beyond z = 1m. For the magnetic fields chosen B, continues
with the same function of r and does not change the sign. B, changes the sign and its
absolute value increases with z. Topologically the arrangement has been changed from
a single expanding coil to a cusp field with two coils, the axial field directions of which

are opposite.

In Fig. 3 the results are plotted for an acceleration length of 3m. Shown are the
values of B, and B, at the position of the electron and its velocities v, and v,. The
most important result is that v, is not limited now to the value 6, = % found
when considering the pure expanding field, but continues to increase and eventually
approaches vy. v, does not change sign when B, does. The particle continues to
encircle the axis in the same direction as it did before the axial field changed its sign.
The electrons, the motion of which is generally diamagnetic in a given field, now behave
in a paramagnetic manner with respect to the axial field. As the plot shows the effect
is not small. The electron that starts diamagnetically in a field of 2 T is found in
paramagnetic motion at z = 3m in an axial field of 4 T. The azimuthal field is of the

same order in this case. It does not change the sign at z = 1m and is the dominant field
there.

The explanation for this particle behaviour is found in the force equations which read
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as follows:
Fr =e(v, - B, —v,B,)
Fo =e(v; - B, — v, B;)
Fz = e(v,B, — v,B;)

Let us first discuss the last equation. The accelerating force does not depend on B, and
its sign. For negative B, and B, and positive v, the acceleration of the particle is in
positive direction v (e has been taken positive). As the figures 2 show the term v, - B,, is
always negative and the accelerating force is always reduced. The acceleration, however,
stays positive as long as the first term is smaller than the second. This apparently is
always the case for & = —1. For o = +1 Fig. 1 shows a deceleration when the particle
approaches the zero point of the axial field. This is caused by the large radial velocity
at the end of the expansion which makes the first term in this equation larger than the

second one.

We now consider the radial force. The second term here depends on the sign of B,,.
If o is positive and hence B, negative (B, in this discussion is always negative) the
radial force is reduced and the particle radius will be enlarged. If « is positive and By
is negative both terms in the equation add to the force. If the term v, - B, reduces
during the acceleration expansion this can be compensated by the growing term v, - Bl
Even if B, is zero the radial force is not, as v, - B, zero. The term v, - B, can indeed
force the electron to rotate in the opposite sense to the case when only the first term

v, - B; 1s present.

The actual motion of the electrons is certainly influenced by the choice of By its
radial dependence, especially the dependence of the radial velocity on z can be varied
drastically, even the sign of the radial motion can be changed. This, however, does
not influence the “paramagnetic” motion of the particles and the possibility to convert
the rotational energy to axial energy. Calculations have been performed for low energy
particles in B,,-fields that increase with the radius like in tokamaks with constant current

density. The results are qualitatively the same as the ones discussed here.

Summary and discussion

The advantage of avoiding betatron resonances by the application of a B,-field does
not have to be paid for (at least in principle, as the stability of the ring has not been
discussed here) by a reduction in acceleration gain. With the correct choice of the
sign of the azimuthal field all of the original transverse energy can be converted to
longitudinal energy, if a cusp field is applied instead of a simple expanding field. For

full conversion the fields, however, approach infinity. The longitudinal motion of the
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electrons in the azimuthal B,-field assures a balancing force to the centripetal force
such that the electrons continue to rotate in the same sense in the inverse axial field as
they did in the original field. With respect to the axial field the electrons are forced to

behave in a paramagnetic manner.

Their rotation frequency around the axis can be expressed in the following form (ne-

glecting a radial velocity):

wc=+wz—z—;-w¢=+wz(1—z—;-z—t)
where w, and w,, are the cyclotron frequencies with the proper sign in the axial and
the azimuthal fields respectively. v, stays small only in the case with negative a. In
this case B, > 0 and v, and v, are both positive. B, starts with negative values and
goes through zero to positive values. As long as B, is negative the diamagnetic effect

is enhanced but becomes paramagnetic if B, changes sign.

A real application of this effect in an electron ring accelerator would depend not only
on the question of ring stability but also on the practical availability of magnetic fields
that are rather large for a high conversion of transverse into longitudinal energy for a

large value of a.

Whether the effect described here has some application in other fields than the electron
ring accelerator has not been investigated in detail. In plasma devices like tokamaks the
class of particles described here - particles encircling the axis - is usually very small. On
the other hand the effect does not depend on relativistic energies nor on the presence of
expanding fields. If instead of expanding fields fields are chosen that are constant along
the axis and acceleration of the particles is accomplished by electric fields, similar to
the case of Ohmic heating in tokamaks, particles that without electric field encircle the
axis continue to do so with axial acceleration with a cyclotron frequency that follows
the formula given above. An influence of this effect might be found for special types
of particles in a plasma like run-away electrons or charged fusion products or for a

toroidally rotating plasma.
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Figure Captions

Fig. 1 Azimuthal and axial velocities v, and v, as a function of distance z along the
expanding field for different values of & = Byg/B,,. Dashed curves: values
applying Merkel’s (linear) theory. Also given are the axial field at ring position
and for @ = —1 the ratio of the axial ring velocity to the ring velocity for a = 0.

Fig. 2 Projection of the particle motion onto a plane perpendicular to the axis.

a) gifor o510
b) : fora = +1
c) : fora=-1

Fig. 3 v, and v; for @ = —1 in the cusp field arrangement as a function of distance z

along the accelerating field. Also B, and B, are given at ring position.
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